Single-molecule analysis of ϕC31 integrase-mediated site-specific recombination by tethered particle motion

نویسندگان

  • Hsiu-Fang Fan
  • Tao-shih Hsieh
  • Chien-Hui Ma
  • Makkuni Jayaram
چکیده

Serine and tyrosine site-specific recombinases (SRs and YRs, respectively) provide templates for understanding the chemical mechanisms and conformational dynamics of strand cleavage/exchange between DNA partners. Current evidence suggests a rather intriguing mechanism for serine recombination, in which one half of the cleaved synaptic complex undergoes a 180° rotation relative to the other. The 'small' and 'large' SRs contain a compact amino-terminal catalytic domain, but differ conspicuously in their carboxyl-terminal domains. So far, only one serine recombinase has been analyzed using single substrate molecules. We now utilized single-molecule tethered particle motion (TPM) to follow step-by-step recombination catalyzed by a large SR, phage ϕC31 integrase. The integrase promotes unidirectional DNA exchange between attB and attP sites to integrate the phage genome into the host chromosome. The recombination directionality factor (RDF; ϕC31 gp3) activates the excision reaction (attL × attR). From integrase-induced changes in TPM in the presence or absence of gp3, we delineated the individual steps of recombination and their kinetic features. The gp3 protein appears to regulate recombination directionality by selectively promoting or excluding active conformations of the synapse formed by specific att site partners. Our results support a 'gated rotation' of the synaptic complex between DNA cleavage and joining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gated rotation mechanism of site-specific recombination by ϕC31 integrase.

Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases u...

متن کامل

Recombination directionality factor gp3 binds ϕC31 integrase via the zinc domain, potentially affecting the trajectory of the coiled-coil motif

To establish a prophage state, the genomic DNA of temperate bacteriophages normally becomes integrated into the genome of their host bacterium by integrase-mediated, site-specific DNA recombination. Serine integrases catalyse a single crossover between an attachment site in the host (attB) and a phage attachment site (attP) on the circularized phage genome to generate the integrated prophage DN...

متن کامل

Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination

Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous stru...

متن کامل

DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination.

Bacteriophage-encoded serine recombinases have great potential in genetic engineering but their catalytic mechanisms have not been adequately studied. Integration of ϕBT1 and ϕC31 via their attachment (att) sites is catalyzed by integrases of the large serine recombinase subtype. Both ϕBT1 and ϕC31 integrases were found to cleave single-substrate att sites without synaptic complex formation, an...

متن کامل

The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling

Serine integrases, DNA site-specific recombinases used by bacteriophages for integration and excision of their DNA to and from their host genomes, are increasingly being used as tools for programmed rearrangements of DNA molecules for biotechnology and synthetic biology. A useful feature of serine integrases is the simple regulation and unidirectionality of their reactions. Recombination betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016